Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 693: 149370, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38100998

RESUMO

CD146/MCAM has garnered significant attention for its potential contribution to cardiovascular disease; however, the transcriptional regulation and functions remain unclear. To explore these processes regarding cardiomyopathy, we employed doxorubicin, a widely used stressor for cardiomyocytes. Our in vitro study on H9c2 cardiomyoblasts highlights that, besides impairing the fatty acid uptake in the cells, doxorubicin suppressed the expression of fatty acid binding protein 4 (Fabp4) along with the histone deacetylase 9 (Hdac9), bromodomain and extra-terminal domain proteins (BETs: Brd2 and Brd4), while augmented the production of CD146/MCAM. Silencing and chemical inhibition of Hdac9 further augmented CD146/MCAM and deteriorated fatty acid uptake. In contrast, chemical inhibition of BETs as well as silencing of MCAM/CD146 ameliorated fatty acid uptake. Moreover, protein kinase C (PKC) inhibition abrogated CD146/MCAM, particularly in the nucleus. Taken together, our results suggest that epigenetic dysregulation of Hdac9, Brd2, and Brd4 alters CD146/MCAM expression, deteriorating fatty acid uptake by downregulating Fabp4. This process depends on the PKC-mediated nuclear translocation of CD146. Thus, this study highlights a pivotal role of CD146/MCAM in doxorubicin-induced cardiomyopathy.


Assuntos
Cardiomiopatias , Fatores de Transcrição , Humanos , Antígeno CD146/genética , Antígeno CD146/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Epigênese Genética
2.
Viruses ; 15(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140682

RESUMO

Syncytin-1 and -2 are glycoproteins encoded by human endogenous retrovirus (hERV) that, through their fusogenic properties, are needed for the formation of the placental syncytiotrophoblast. Previous studies suggested that these proteins, in addition to the EnvP(b) envelope protein, are also involved in other cell fusion events. Since galectin-1 is a ß-galactoside-binding protein associated with cytotrophoblast fusion during placental development, we previously tested its effect on Syncytin-mediated cell fusion and showed that this protein differently modulates the fusogenic potential of Syncytin-1 and -2. Herein, we were interested in comparing the impact of galectin-1 on hERV envelope proteins in different cellular contexts. Using a syncytium assay, we first demonstrated that galectin-1 increased the fusion of Syncytin-2- and EnvP(b)-expressing cells. We then tested the infectivity of Syncytin-1 and -2 vs. VSV-G-pseudotyped viruses toward Cos-7 and various human cell lines. In the presence of galectin-1, infection of Syncytin-2-pseudotyped viruses augmented for all cell lines. In contrast, the impact of galectin-1 on the infectivity of Syncytin-1-pseudotyped viruses varied, being cell- and dose-dependent. In this study, we report the functional associations between three hERV envelope proteins and galectin-1, which should provide information on the fusogenic activity of these proteins in the placenta and other biological and pathological processes.


Assuntos
Retrovirus Endógenos , Placenta , Feminino , Humanos , Gravidez , Linhagem Celular , Retrovirus Endógenos/metabolismo , Galectina 1/metabolismo , Produtos do Gene env/genética , Placenta/metabolismo , Trofoblastos/metabolismo , Fusão Celular
3.
J Neurosurg Anesthesiol ; 35(3): 341-346, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275099

RESUMO

BACKGROUND: Cardiopulmonary resuscitation (CPR) may not be sufficient to halt the progression of brain damage. Using extracellular glutamate concentration as a marker for neuronal damage, we quantitatively evaluated the degree of brain damage during resuscitation without return of spontaneous circulation. MATERIALS AND METHODS: Extracellular cerebral glutamate concentration was measured with a microdialysis probe every 2 minutes for 40 minutes after electrical stimulation-induced cardiac arrest without return of spontaneous circulation in Sprague-Dawley rats. The rats were divided into 3 groups (7 per group) according to the treatment received during the 40 minutes observation period: mechanical ventilation without chest compression (group V); mechanical ventilation and chest compression (group VC) and; ventilation, chest compression and brain hypothermia (group VCH). Chest compression (20 min) and hypothermia (40 min) were initiated 6 minutes after the onset of cardiac arrest. RESULTS: Glutamate concentration increased in all groups after cardiac arrest. Although after the onset of chest compression, glutamate concentration showed a significant difference at 2 min and reached the maximum at 6 min (VC group; 284±48 µmol/L vs. V group 398±126 µmol/L, P =0.003), there was no difference toward the end of chest compression (513±61 µmol/L vs. 588±103 µmol/L, P =0.051). In the VCH group, the initial increase in glutamate concentration was suddenly suppressed 2 minutes after the onset of brain hypothermia. CONCLUSIONS: CPR alone reduced the progression of brain damage for a limited period but CPR in combination with brain cooling strongly suppressed increases in glutamate levels.


Assuntos
Lesões Encefálicas , Reanimação Cardiopulmonar , Parada Cardíaca , Hipotermia , Animais , Ratos , Ácido Glutâmico , Ratos Sprague-Dawley , Parada Cardíaca/terapia , Córtex Cerebral
4.
Elife ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125118

RESUMO

The tumor suppressor p53 regulates various stress responses via increasing its cellular levels. The lowest p53 levels occur in unstressed cells; however, the functions of these low levels remain unclear. To investigate the functions, we used empirical single-cell tracking of p53-expressing (Control) cells and cells in which p53 expression was silenced by RNA interference (p53 RNAi). Here, we show that p53 RNAi cells underwent more frequent cell death and cell fusion, which further induced multipolar cell division to generate aneuploid progeny. Those results suggest that the low levels of p53 in unstressed cells indeed have a role in suppressing the induction of cell death and the formation of aneuploid cells. We further investigated the impact of p53 silencing by developing an algorithm to simulate the fates of individual cells. Simulation of the fate of aneuploid cells revealed that these cells could propagate to create an aneuploid cell population. In addition, the simulation also revealed that more frequent induction of cell death in p53 RNAi cells under unstressed conditions conferred a disadvantage in terms of population expansion compared with Control cells, resulting in faster expansion of Control cells compared with p53 RNAi cells, leading to Control cells predominating in mixed cell populations. In contrast, the expansion of Control cells, but not p53 RNAi cells, was suppressed when the damage response was induced, allowing p53 RNAi cells to expand their population compared with the Control cells. These results suggest that, although p53 could suppress the formation of aneuploid cells, which could have a role in tumorigenesis, it could also allow the expansion of cells lacking p53 expression when the damage response is induced. p53 may thus play a role in both the suppression and the promotion of malignant cell formation during tumorigenesis.


Assuntos
Rastreamento de Células , Proteína Supressora de Tumor p53 , Aneuploidia , Morte Celular , Transformação Celular Neoplásica/genética , Humanos , Interferência de RNA , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681843

RESUMO

Aminosteroid derivative RM-581 was previously identified as an endoplasmic-reticulum (ER) stress inducer with potent in vitro and in vivo anticancer activities. We report its evaluation in androgen-independent prostate cancer (PC-3) cells. RM-581 efficiently blocks PC-3 cell proliferation with stronger activity than that of a selection of known antineoplastic agents. This later also showed a synergistic effect with docetaxel, able to block the proliferation of docetaxel-resistant PC-3 cells and, contrary to docetaxel, did not induce cell resistance. RM-581 induced an increase in the expression level of ER stress-related markers of apoptosis, potentially triggered by the presence of RM-581 in the ER of PC-3 cells. These in vitro results were then successfully translated in vivo in a PC-3 xenograft tumor model in nude mice, showing superior blockade than that of docetaxel. RM-581 was also able to stop the progression of PC-3 cells when they had become resistant to docetaxel treatment. Concomitantly, we observed a decrease in gene markers of mevalonate and fatty acid pathways, and intratumoral levels of cholesterol by 19% and fatty acids by 22%. Overall, this work demonstrates the potential of an ER stress inducer as an anticancer agent for the treatment of prostate cancers that are refractory to commonly used chemotherapy treatments.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Estresse do Retículo Endoplasmático , Estranos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Docetaxel/uso terapêutico , Estranos/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/fisiopatologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Pharmacol Res Perspect ; 9(5): e00869, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34586752

RESUMO

Previously, we showed that sodium/glucose cotransporter 1 (SGLT1) participates in vascular cognitive impairment in small vessel disease. We hypothesized that SGLT1 inhibitors can improve the small vessel disease induced-vascular cognitive impairment. We examined the effects of mizagliflozin, a selective SGLT1 inhibitor, and phlorizin, a non-selective SGLT inhibitor, on vascular cognitive impairment in a mouse model of small vessel disease. Small vessel disease was created using a mouse model of asymmetric common carotid artery surgery (ACAS). Two and/or 4 weeks after ACAS, all experiments were performed. Cerebral blood flow (CBF) was decreased in ACAS compared with sham-operated mice. Phlorizin but not mizagliflozin reversed the decreased CBF of ACAS mice. Both mizagliflozin and phlorizin reversed the ACAS-induced decrease in the latency to fall in a wire hang test of ACAS mice. Moreover, they reversed the ACAS-induced longer escape latencies in the Morris water maze test of ACAS mice. ACAS increased SGLT1 and proinflammatory cytokine gene expressions in mouse brains and phlorizin but not mizagliflozin normalized all gene expressions in ACAS mice. Hematoxylin/eosin staining demonstrated that they inhibited pyknotic cell death in the ACAS mouse hippocampus. In PC12HS cells, IL-1ß increased SGLT1 expression and decreased survival rates of cells. Both mizagliflozin and phlorizin increased the survival rates of IL-1ß-treated PC12HS cells. These results suggest that mizagliflozin and phlorizin can improve vascular cognitive impairment through the inhibition of neural SGLT1 and phlorizin also does so through the improvement of CBF in a mouse model of small vessel disease.


Assuntos
Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Glucosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Pirazóis/farmacologia , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Animais , Artéria Carótida Primitiva/cirurgia , Doenças de Pequenos Vasos Cerebrais/patologia , Disfunção Cognitiva/patologia , Citocinas/efeitos dos fármacos , Citocinas/genética , Modelos Animais de Doenças , Hipocampo/patologia , Inflamação/genética , Camundongos , Teste do Labirinto Aquático de Morris , Neurônios/patologia , Florizina/farmacologia
7.
Int Heart J ; 62(3): 616-626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054002

RESUMO

Atrial fibrillation (AF) is a relatively common complication of hypertension. Chronic hypertension induces cardiac HDAC6 catalytic activity. However, whether HDAC6 activation contributes to hypertension-induced AF is still uncertain. We examined whether chronic cardiac HDAC6 activation-induced atrial remodeling, leading to AF induction.The HDAC6 constitutively active transgenic (TG) (HDAC6 active TG) mouse overexpressing the active HDAC6 protein, specifically in cardiomyocytes, was created to examine the effects of chronic HDAC6 activation on atrial electrical and structural remodeling and AF induction in HDAC6 active TG and non-transgenic (NTG) mice. Left atrial burst pacing (S1S1 = 30 msec) for 15-30 sec significantly increased the frequency of sustained AF in HDAC6 active-TG mice compared with NTG mice. Left steady-state atrial pacing (S1S1 = 80 msec) decreased the atrial conduction velocity in isolated HDAC6 active TG compared with NTG mouse atria. The atrial size was similar between HDAC6 active TG and NTG mice. In contrast, atrial interstitial fibrosis increased in HDAC6 active TG compared with that of NTG mouse atria. While protein expression levels of both CX40 and CX43 were similar between HDAC6 active TG and NTG mouse atria, a heterogeneous distribution of CX40 and CX43 occurred in HDAC6 active-TG mouse atria but not in NTG mouse atria. Gene expression of interleukin 6 increased in HDAC6 active TG compared with NTG mouse atria.Chronic cardiac HDAC6 activation induced atrial electrical and structural remodeling, and sustained AF. Hypertension-induced cardiac HDAC6 catalytic activity may play important roles in the development of AF.


Assuntos
Fibrilação Atrial/fisiopatologia , Conexinas/metabolismo , Átrios do Coração/fisiopatologia , Desacetilase 6 de Histona/farmacologia , Interleucina-6/metabolismo , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Remodelamento Atrial , Estimulação Cardíaca Artificial/métodos , Estudos de Casos e Controles , Feminino , Fibrose , Átrios do Coração/patologia , Desacetilase 6 de Histona/metabolismo , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Miócitos Cardíacos/metabolismo
8.
J Reprod Dev ; 67(3): 235-239, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33853994

RESUMO

Saving space for sperm cryopreservation would aid mouse genetics research. We previously developed the ST (sperm freezing in ShorT STraw to reduce STorage space) method for cryopreserving mouse sperm in a smaller storage space than conventional methods. However, our ST method has two drawbacks: difficulties during freeze-thaw procedures and the potential risk of sperm loss during storage. Here, we refine ST, terming the new method improved ST (iST). In iST, the straw has an air-permeable filter and the straw container (2-ml cryotube) is endowed with air vents. As in our ST method, iST frozen-thawed sperm showed good performance upon in vitro fertilization. Moreover, up to nine straws can be stored in one cryotube, occupying less storage space than conventional methods. This method provides an easy and space-saving cryopreservation method for mouse sperm, and thus will be valuable for mouse genetics researchers.


Assuntos
Criopreservação/métodos , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Animais , Fertilização In Vitro , Congelamento , Masculino , Camundongos , Análise do Sêmen
9.
Med Res Rev ; 41(4): 2582-2589, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33733487

RESUMO

Galectins are soluble ß-galactoside-binding proteins found in all multicellular organisms. Galectins may act as danger-associated molecular patterns in innate immunity and/or as pattern-recognition receptors that bind to pathogen-associated molecular patterns. Among different galectin family members, galectin-3 has been the focus of studies in neurodegenerative diseases in recent years. This lectin modulates brain innate immune responses, microglia activation patterns in physiological and pathophysiological settings in a context-dependent manner. Galectin-3 is considered as a pivotal tuner of macrophage and microglial activity. Indeed galectin-3 acts as a double edged sword in neuroinflammatory context and this multimodal lectin has diverse roles in physiological and pathophysiological conditions. Better understanding of galectin-3 physiology (its extracellular and intracellular actions) and structure (its C terminus vs. N terminus) is instrumental to design molecules that selectively modulate galectin-3 function toward neuroprotective phenotypes. Several experimental studies using different approaches and methods have demonstrated both protective and deleterious effects of galectin-3 in neuroinflammatory diseases. According to the crucial role of galectin-3 in modulation of innate immune response in brain, it is an attractive target in drug discovery of neurodegenerative diseases. The current insight attempts to provide an updated and balanced discussion on the role of galectin-3 as a complex endogenous immune modulator. This helps to have a better insight into the development of galectin-3 modulators with translational value in different neurological disorders including stroke and neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease and Parkinson's disease.


Assuntos
Doença de Alzheimer , Microglia , Galectina 3 , Galectinas , Humanos , Ligantes
10.
Mol Cell Biochem ; 476(5): 2021-2028, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33515199

RESUMO

Gicerin/CD146 is a cell adhesion molecule which belongs to the immunoglobulin (Ig) superfamily. We have reported the existence of gicerin/CD146 in the nervous system, heart, lung and smooth muscles of blood vessels. In this study, we make a cardiac hypertrophy model rat by constricting the rat aorta (AAC, ascending aortic constriction) and examined the effect on the expression of gicerin/CD146 in the heart. We found that the expression level of gicerin/CD146 was increased by the AAC treatment. Next, stretch stimulation was applied to myocardial cell line H9c2 cells to confirm that gicerin/CD146 may participate in the cellular hypertrophy model. We also treated the cells with inhibitors of MAP pathway enzymes. In cultured myocardial cells, the expression level of gicerin/CD146 was increased by the stretch stimulation and decreased by inhibiting the MAP pathway. Based on the above findings, it is suggested that the expression of gicerin/CD146 is involved in cardiac hypertrophy, and that the MAP pathway may be involved in the expression of gicerin/CD146 RNA in the cardiomyocyte. In addition, the expression level of gicerin/CD146 RNA in neonatal rats was upregulated after birth. Therefore, it is suggested that gicerin/CD146 might participate in the increase of myocardial cell volume both in the pathway of cardiac hypertrophy and in the developmental growth of heart.


Assuntos
Antígeno CD146/metabolismo , Cardiomegalia/metabolismo , Regulação da Expressão Gênica , Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Animais , Cardiomegalia/patologia , Linhagem Celular , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Neurosurg Anesthesiol ; 33(4): 356-362, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834249

RESUMO

BACKGROUND: Brain ischemia due to disruption of cerebral blood flow (CBF) results in increases in extracellular glutamate concentration and neuronal cell damage. However, the impact of CBF on glutamate dynamics after the loss of the membrane potential remains unknown. MATERIALS AND METHODS: To determine this impact, we measured extracellular potential, CBF, and extracellular glutamate concentration in the parietal cortex in male Sprague-Dawley rats (n=21). CBF was reduced by bilateral occlusion of the common carotid arteries and exsanguination until loss of extracellular membrane potential was observed (low-flow group), or until CBF was further reduced by 5% to 10% of preischemia levels (severe-low-flow group). CBF was promptly restored 10 minutes after the loss of membrane potential. Histologic outcomes were evaluated 5 days later. RESULTS: Extracellular glutamate concentration in the low-flow group was significantly lower than that in the severe-low-flow group. Moreover, increases in extracellular glutamate concentration exhibited a linear relationship with decreases in CBF after the loss of membrane potential in the severe-low-flow group, and the percentage of damaged neurons exhibited a dose-response relationship with the extracellular glutamate concentration. The extracellular glutamate concentration required to cause 50% neuronal damage was estimated to be 387 µmol/L, at 8.7% of preischemia CBF. Regression analyses revealed that extracellular glutamate concentration increased by 21 µmol/L with each 1% decrease in residual CBF and that the percentage of damaged neurons increased by 2.6%. CONCLUSION: Our results indicate that residual CBF is an important factor that determines the extracellular glutamate concentration after the loss of membrane potential, and residual CBF would be one of the important determinants of neuronal cell prognosis.


Assuntos
Circulação Cerebrovascular , Ácido Glutâmico , Animais , Isquemia , Masculino , Potenciais da Membrana , Ratos , Ratos Sprague-Dawley
12.
PLoS Pathog ; 16(8): e1008741, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750085

RESUMO

Aspergillus fumigatus is an opportunistic mold that infects patients who are immunocompromised or have chronic lung disease, causing significant morbidity and mortality in these populations. While the factors governing the host response to A. fumigatus remain poorly defined, neutrophil recruitment to the site of infection is critical to clear the fungus. Galectin-3 is a mammalian ß-galactose-binding lectin with both antimicrobial and immunomodulatory activities, however the role of galectin-3 in the defense against molds has not been studied. Here we show that galectin-3 expression is markedly up-regulated in mice and humans with pulmonary aspergillosis. Galectin-3 deficient mice displayed increased fungal burden and higher mortality during pulmonary infection. In contrast to previous reports with pathogenic yeast, galectin-3 exhibited no antifungal activity against A. fumigatus in vitro. Galectin-3 deficient mice exhibited fewer neutrophils in their airways during infection, despite normal numbers of total lung neutrophils. Intravital imaging studies confirmed that galectin-3 was required for normal neutrophil migration to the airspaces during fungal infection. Adoptive transfer experiments demonstrated that stromal rather than neutrophil-intrinsic galectin-3 was necessary for normal neutrophil entry into the airspaces. Live cell imaging studies revealed that extracellular galectin-3 directly increases neutrophil motility. Taken together, these data demonstrate that extracellular galectin-3 facilitates recruitment of neutrophils to the site of A. fumigatus infection, and reveals a novel role for galectin-3 in host defense against fungal infections.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/fisiologia , Galectina 3/imunologia , Pulmão/microbiologia , Neutrófilos/citologia , Animais , Aspergilose/genética , Aspergilose/microbiologia , Aspergilose/fisiopatologia , Aspergillus fumigatus/genética , Movimento Celular , Feminino , Galectina 3/genética , Humanos , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia
13.
Methods Mol Biol ; 2132: 39-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32306313

RESUMO

Galectins are a family of soluble ß-galactoside-binding proteins that share conserved carbohydrate recognition domain. Galectins are found in most multicellular organisms and exert various biological functions by binding to the surface glycoconjugates as lectins. In this chapter, we describe the general methods of purification of galectins, quality control of purified galectins, some example methods of evaluating their carbohydrate-binding activity, and use of galectin to search or detect galectin ligands as well as a series of precautions for the usage of galectins.


Assuntos
Galectinas/química , Galectinas/metabolismo , Animais , Sítios de Ligação , Cromatografia de Afinidade , Galectinas/isolamento & purificação , Ligantes , Ligação Proteica , Ressonância de Plasmônio de Superfície
14.
Neurosci Lett ; 727: 134929, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32217089

RESUMO

Sodium/glucose cotransporter 1 (SGLT1) participates in ischemia-reperfusion-induced cerebral injury. However, whether SGLT1 participates in the development of small vessel disease induced-vascular cognitive impairment is unknown. We examined the roles of SGLT1 in the development of vascular cognitive impairment in a mouse model of small vessel disease. Small vessel disease was created by placement of an ameroid constrictor around the right common carotid artery (CCA) and placement of a microcoil around the left CCA (ACAS) in wild-type (WT) and SGLT1-knock out (KO) mice. Two and/or 4 weeks after ACAS, all experiments were performed. Hematoxylin/eosin staining demonstrated that the number of pyknotic cell deaths was greater in the ACAS WT than ACAS SGLT1-KO hippocampus. The latency to fall in a wire hang test was significantly shorter in ACAS than sham-operated WT mice, whereas it was similar between ACAS and sham-operated SGLT1-KO mice. The Morris water maze test revealed that ACAS WT mice exhibited longer escape latencies than ACAS SGLT1-KO mice. ACAS significantly increased SGLT1 gene expression in WT mouse brains. Gene expressions of MCP-1, IL-1ß, TNF-α, and IL-6 were increased in ACAS WT compared with sham-operated WT mouse brains. Their increased gene expressions were significantly decreased in ACAS SGLT1-KO compared with ACAS WT mice. These results suggest that SGLT1 plays important roles in the development of small vessel dementia.


Assuntos
Disfunção Cognitiva/metabolismo , Demência Vascular/metabolismo , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Transportador 1 de Glucose-Sódio/deficiência , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/patologia , Demência Vascular/patologia , Camundongos , Camundongos Knockout , Transportador 1 de Glucose-Sódio/genética
15.
Brain Behav Immun Health ; 3: 100041, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34589834

RESUMO

Growing evidence suggests that galectin-3 (Gal-3) is instrumental in orchestrating innate immune response and microglia activation following different brain pathologies. However, its role remains controversial. We recently showed that a readily available natural product glucosamine may act as a strong modulator of Gal-3. Glucosamine is a naturally occurring sugar and a precursor in the synthesis of glycosylated proteins. It is often used as a supplement to treat symptoms of various inflammatory conditions. Our recent work suggests that by increasing the synthesis and availability of Gal-3 ligands and/or by regulating its expression levels, glucosamine may significantly modulate Gal-3 signaling. Because evidence suggests that Gal-3 might be differentially regulated after ischemic injury in the brains of female mice, here we examined and compared the immunomodulatory potential of glucosamine in male and female stroke. The mice were subjected to transient middle cerebral artery occlusion (MCAO), followed by different reperfusion periods. The short-term 5 days treatment with glucosamine (150 â€‹mg/kg i.p.) was initiated 2 â€‹hrs after stroke. To visualize the effects of glucosamine treatment on post-stroke inflammation, we took advantage of a transgenic mouse model bearing the dual reporter system luciferase/GFP under transcriptional control of a murine TLR2 promoter (TLR2-luc-GFP) allowing in vivo bioluminescence imaging of innate immune response and microglial activation. We report that after stroke, both, male and female mice strongly up-regulate the TLR2 bioluminescence signals from activated microglia, however, the observed in vivo immunomodulatory effects of glucosamine after stroke were sex-dependent. Analysis of cytokine profiles at protein level, in glucosamine-treated male mice 72hsr after stroke, revealed down regulation of pro-inflammatory cytokines, an increase in levels of anti-inflammatory cytokines including IL-4, IL13 and colony stimulating factors MCFC and GM-CSF and a significant decrease in the size of ischemic lesion in male mice. Conversely, in female mice glucosamine markedly increases the pro-inflammatory signaling and exacerbates ischemic injury. Analysis of the downstream signaling target of glucosamine/Gal-3 revealed that glucosamine administration restored PPAR-γ activity in male but not in female mice 3 days following MCAO. Together, our results suggest that glucosamine acts as a fine tuner of post-ischemic inflammation in a sex dependent-manner and may have therapeutic potential after stroke in males. Based on our results propose that targeting immune system after stroke may require adapted sex-specific therapeutic approaches.

16.
FASEB J ; 33(11): 12873-12887, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499012

RESUMO

Syncytin (Syn)-2 is an important fusogenic protein that contributes to the formation of the placental syncytiotrophoblast. Galectin (Gal)-1, a soluble lectin, is also involved in trophoblast cell fusion and modulates the interaction of certain retroviral envelopes with their cellular receptor. This study aimed to investigate the association between Syn-2 and Gal-1 during human trophoblast cell fusion. This association was evaluated in vitro on primary villous cytotrophoblasts (vCTBs) and cell lines using recombinant Gal-1 and Syn-2-pseudotyped viruses. Using lactose, a Gal antagonist, and Gal-1-specific small interfering RNA (siRNA) transfections, we confirmed the implication of Gal-1 in vCTBs and BeWo cell fusion, although RT-PCR and ELISA analyses suggested that Gal-1 alone did not induce syncytialization. Infection assays showed a specific and significant effect of Gal-1 on the infectivity of Syn-2-pseudotyped viruses that depended on the expression of major facilitator superfamily domain-containing 2A (MFSD2a). Moreover, Gal-3, another placental Gal, did not modulate the infectivity of Syn-2-positive viruses, strengthening the specific association between Gal-1 and Syn-2. Interestingly, Gal-1 significantly reduced the infectivity of Syn-1-pseudotyped viruses, suggesting the opposite effects of Gal-1 on Syn-1 and -2. Finally, coimmunoprecipitation experiments showed a glycan-dependent interaction between Syn-2-bearing virions and Gal-1. We conclude that Gal-1 specifically interacts with Syn-2 and possibly regulates Syn-2/MFSD2a interaction during syncytialization of trophoblastic cells.-Toudic, C., Vargas, A., Xiao, Y., St-Pierre, G., Bannert, N., Lafond, J., Rassart, É., Sato, S., Barbeau, B. Galectin-1 interacts with the human endogenous retroviral envelope protein syncytin-2 and potentiates trophoblast fusion in humans.


Assuntos
Fusão Celular , Galectina 1/metabolismo , Proteínas da Gravidez/metabolismo , Trofoblastos/citologia , Retrovirus Endógenos , Feminino , Células HEK293 , Células HeLa , Humanos , Gravidez , Ligação Proteica
17.
PLoS One ; 14(3): e0214512, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30925183

RESUMO

Cultured cell populations are composed of heterogeneous cells, and previous single-cell lineage tracking analysis of individual HeLa cells provided empirical evidence for significant heterogeneity of the rate of cell proliferation and induction of cell death. Nevertheless, such cell lines have been used for investigations of cellular responses to various substances, resulting in incomplete characterizations. This problem caused by heterogeneity within cell lines could be overcome by investigating the spatiotemporal responses of individual cells to a substance. However, no approach to investigate the responses by analyzing spatiotemporal data is currently available. Thus, this study aimed to analyze the spatiotemporal responses of individual HeLa cells to cytotoxic, sub-cytotoxic, and non-cytotoxic doses of the well-characterized carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Although cytotoxic doses of MNNG are known to induce cell death, the single-cell tracking approach revealed that cell death occurred following at least four different cellular events, suggesting that cell death is induced via multiple processes. We also found that HeLa cells exposed to a sub-cytotoxic dose of MNNG were in a state of equilibrium between cell proliferation and cell death, with cell death again induced through different processes. However, exposure of cells to a non-cytotoxic dose of MNNG promoted growth by reducing the cell doubling time, thus promoting the growth of a sub-population of cells. A single-cell lineage tracking approach could dissect processes leading to cell death in a spatiotemporal manner and the results suggest that spatiotemporal data obtained by tracking individual cells can be used as a new type of bioinformatics data resource that enables the examination of cellular responses to various external substances.


Assuntos
Alquilantes/toxicidade , Metilnitronitrosoguanidina/toxicidade , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Fatores de Tempo
18.
Mol Neurobiol ; 56(9): 6371-6385, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30798442

RESUMO

Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has recently emerged as a molecule with immunoregulatory functions. We investigated the effects of Gal-3 on microglia morphology, migration, and secretory profile under physiological conditions and in the context of ischemic injury. We show that in the control conditions, exposure to recombinant Gal-3 increases microglial ramification and motility in vitro and in vivo via an IL-4-dependent mechanism. Importantly, after stroke, Gal-3 exerted marked immune-modulatory properties. Delivery of Gal-3 at 24 h after middle cerebral artery occlusion (MCAO) was associated with an increase in Ym1-positive microglia and decrease in iNOS. Analysis of cytokine profiles at the protein level revealed downregulation of pro-inflammatory cytokines and a marked upregulation of the anti-inflammatory cytokine, IL-4, 24 h after i.c.v. injection of Gal-3. Importantly, the observed shift in cytokines in microglia was associated with a significant decrease in the infarct size. Taken together, our results suggest that when delivered well after ischemic injury, Gal-3 might fine tune innate immunity and induce a therapeutic shift in microglia polarization.


Assuntos
Reprogramação Celular , Galectina 3/metabolismo , Microglia/metabolismo , Neuroproteção , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Animais , Biomarcadores/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Movimento Celular , Proliferação de Células , Forma Celular , Citocinas/metabolismo , Glucosamina , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptor 2 Toll-Like/metabolismo
19.
J Reprod Dev ; 64(6): 541-545, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30270280

RESUMO

Efficient cryopreservation and transportation of mouse sperm are among the most desirable strategies for current and future research on mouse genetics. However, the current method for sperm cryopreservation uses an 11-cm plastic straw, which is a bulky and fragile container. Developing an alternative to overcome the limitations associated with this method would accelerate biomedical research. Here, we developed the ST (sperm-freezing in ShorT STraw to reduce STorage space) method for cryopreserving mouse sperm in short 3.8-cm plastic straws. Up to nine short straws can be stored in a cryotube, reducing storage space. We further show that sperm frozen by the ST method can be transported in liquid nitrogen or dry ice without any detrimental effects on subsequent fertilization and the birth rate. Our findings suggest that this sperm-freezing method is beneficial not only for individual laboratories but also for large-scale mutagenesis/knockout and phenotyping programs.


Assuntos
Criopreservação/veterinária , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Animais , Criopreservação/métodos , Gelo-Seco , Fertilização In Vitro/veterinária , Congelamento , Masculino , Camundongos , Preservação do Sêmen/métodos
20.
FASEB J ; : fj201701151RRR, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29894670

RESUMO

The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in patients with DMD, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells. Therefore, approaches to reducing the risk of the exhaustion are to develop a treatment that strengthens the interaction between the sarcolemma and the basal lamina and increases the efficiency of the myogenesis. Galectin-3 is an oligosaccharide-binding protein and is known to be involved in cell-cell interactions and cell-matrix interactions. Galectin-3 is expressed in myoblasts and skeletal muscle, although its function in muscle remains elusive. In this study, we found evidence that galectin-3 and the monosaccharide N-acetylglucosamine, which increases the synthesis of binding partners (oligosaccharides) of galectin-3, promote myogenesis in vitro. Moreover, in the mdx mouse model of DMD, treatment with N-acetylglucosamine increased muscle-force production. The results suggest that treatment with N-acetylglucosamine might mitigate the burden of DMD.-Rancourt, A., Dufresne, S. S., St-Pierre, G., Lévesque, J.-C., Nakamura, H., Kikuchi, Y., Satoh, M. S., Frenette, J., Sato, S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...